RESOURCES

Prenaital: A University-Based Spin-Out

Prenaital is a spin-out from the University of Copenhagen and the Technical University of Denmark (DTU), building on world-class medical AI research to transform prenatal diagnostics. Our technology is scientifically validated, ensuring accurate, unbiased, and robust detection of high-risk pregnancies.

Key Publications Supporting Our Innovations:

Tolsgaard, M. G., Svendsen, M. B. S., Thybo, J. K., Petersen, O. B., Sundberg, K. M., & Christensen, A. N. (2021).
Does artificial intelligence for classifying
ultrasound imaging generalize between different populations and contexts?
Ultrasound in Obstetrics and Gynecology, 57(2), 342-343. John Wiley & Sons Ltd. Read

  • Mauris ligula risus, rutrum ac sodales in?

Andreasen, L. A., Feragen, A., Christensen, A. N., Thybo, J. K., Svendsen, M. B.S., Zepf, K., Lekadir, K., & Tolsgaard, M. G. (2023).
Multi-centre deep learning for
placenta segmentation in obstetric ultrasound with multi-observer and cross-country generalization. Scientific Reports, 13(1), 2221. Nature Publishing Group UK London. Read

  • Mauris ligula risus, rutrum ac sodales in?

Taksøe‐Vester, C. A., Mikolaj, K., Petersen, O. B. B., Vejlstrup, N. G., Christensen, A. N., Feragen, A., Nielsen, M., Svendsen, M. B. S., & Tolsgaard, M. G. (2024).
Role of AI‐assisted automated cardiac biometrics in screening for fetal coarctation of aorta. Ultrasound in Obstetrics & Gynecology. John Wiley & Sons Ltd. Read

  • Mauris ligula risus, rutrum ac sodales in?

Bashir, Z., Lin, M., Feragen, A., MikolajeK., Taksoee-Vester, C., Christensen, A.
N., Svendsen, M. B. S., Fabricius, M. H., Andreasen, L., & Nielsen, M. (2025).

Clinical validation of explainable AI for fetal growth scans through multi-level, cross- institutional prospective end-user evaluation. Scientific Reports, 15(1), 2074. Nature Publishing Group UK London. Read

Lin, M., Zepf, K., Christensen, A. N., Bashir, Z., Svendsen, M. B. S., Tolsgaard, M., & Feragen, A. (2023).
DTU-Net: Learning topological similarity for curvilinear
structure segmentation. International Conference on Information Processing in
Medical Imaging. Springer Nature Switzerland Cham. Read

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit?

Mikolaj, K., Lin, M., Bashir, Z., Svendsen, M. B. S., Tolsgaard, M., Nymark, A., & Feragen, A. (2023).
Removing confounding information from fetal ultrasound
images. arXiv preprint arXiv:2303.13918. Read

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit?

Wong, C. K., Ngo, M., Lin, M., Bashir, Z., Heen, A., Svendsen, M. B. S., Tolsgaard, M. G., Christensen, A. N., & Feragen, A. (2024).
Deployment of deep learning models in real-world clinical settings: A case study in obstetric ultrasound.
arXiv preprint arXiv:2404.00032. Read

  • Lorem ipsum dolor sit amet, consectetur adipiscing elit?

These peer-reviewed studies reinforce our commitment to scientific excellence and clinical impact, ensuring that Prenaital’s AI solutions provide unparalleled accuracy and clinical value in prenatal care.